Structure Refinement of Three Caesium Mercury Iodides, $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{\mathbf{8}} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Cs}_{2} \mathrm{HgI}_{4}$ and $\mathbf{C s}_{3} \mathbf{H g I}_{5}$

By Rune Sjövall and Christer Svensson
Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 29 June 1987; accepted 29 September 1987)

Abstract

The crystal structures of three double iodides commonly formed from water solutions of caesium iodide and mercury diiodide have been redetermined at room temperature, Mo $K \alpha$ radiation, $\lambda=0.71093 \AA$. In order of increasing caesium iodide content they are: (I) $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=1900 \cdot 83$, monoclinic, $\mathrm{Cm}, a=$ 7.451 (1), $\quad b=21.721$ (3), $\quad c=7.685$ (1) $\AA \AA, \quad \beta=$ $108.03(1)^{\circ}, \quad V=1182.7(3) \AA^{3}, \quad Z=2, \quad D_{x}=$ 5.338 (1) $\mathrm{g} \mathrm{cm}^{-3}, \mu=327.4 \mathrm{~cm}^{-1}, R=0.032$ for 1956 observed reflections; (II) $\mathrm{Cs}_{2} \mathrm{HgI}_{4}, M_{r}=974 \cdot 02$, monoclinic, $\quad P 2 / m, \quad a=7.734(1), \quad b=8.386(1), \quad c=$ 11.019 (1) $\AA, \quad \beta=110.06(1)^{\circ}, \quad V=671.2(1) \AA^{3}, Z$ $=2, \quad D_{x}=4.820(1) \mathrm{g} \mathrm{cm}^{-3}, \quad \mu=258.2 \mathrm{~cm}^{-1}, \quad R=$ 0.032 for 2009 observed reflections; (III) $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$, $M_{r}=1233.83$, orthorhombic, Pbca, $a=18.789$ (3), $b=18.433$ (3), $c=10 \cdot 106$ (2) $\AA, V=3500$ (1) \AA^{3}, Z $=8, \quad D_{x}=4.683(2) \mathrm{g} \mathrm{cm}^{-3}, \quad \mu=236.4 \mathrm{~cm}^{-1}, \quad R=$ 0.024 for 1988 observed reflections. In each of the compounds, Hg is bonded tetrahedrally to four I atoms, with vertex sharing of the coordination polyhedra in (I), and isolated HgI_{4}^{2-} ions in (II) and (III). The $\mathrm{Hg}-\mathrm{I}$ bond distances are in the range 2.68 to $2.95 \AA$ for (I) and between 2.73 and $2.82 \AA$ in (II) and (III). The Cs ions have irregular coordination based on capped trigonal prisms. In (I) there is a tricapped trigonal prism of one water O atom at $3 \cdot 19 \AA$ and eight I atoms at 3.93-4.17 \AA. Compound (II) has one each of $6+2$ - and $7+2$-coordinated Cs^{+}with $\mathrm{Cs}-\mathrm{I}$ distances $3.88-4.27$ and $3.77-4.37 \AA$, respectively. The three independent Cs^{+}ions of (III) have $9,7+2$ and $7+1$ I neighbours at 3.89-4.16, 3.80-4.69 and 3.76-4.28 Å.

Introduction. As part of a study of double iodides of caesium we have investigated the crystal structures formed from mixtures of CsI and HgI_{2} in water solution and from the melt. Wells (1892) described five caesium mercury iodides, in order of increasing CsI content: $\mathrm{CsHg}_{2} \mathrm{I}_{5}, \mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8}, \mathrm{CsHgI}_{3}$ (possibly a hydrate), $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ and $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$. Later, Pernot $(1936,1938)$ investigated the $\mathrm{CsI}-\mathrm{HgI}_{2}-\mathrm{H}_{2} \mathrm{O}$ system between 273 and 351 K and found the same five compounds. Two of them, $\mathrm{CsHg}_{2} \mathrm{I}_{5}$ and CsHgI_{3}, were formed within very limited ranges of concentration and temperature. Of the other three, $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ crystallizes within the widest concentration/temperature limits, and it is often formed together with the others from an evaporating solution.

0108-2701/88/020207-04\$03.00

The $\mathrm{CsI}-\mathrm{HgI}_{2}$ phase diagram has since been studied by Pakhomov, Fedorov, Polyakov \& Kirilenko (1977); Podorozhnyi, Safonov \& Korshunov (1982); Podorozhnyi, Safonov \& Sharipov (1984). The results show that there exist only two stable intermediate compounds, viz $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ with a solid phase transition at 518 K and $\mathrm{CsHg}_{2} \mathrm{I}_{5}$, which decomposes in air.

The three crystal structures commonly formed from water solution have been determined earlier on the basis of film data and with R factors of $0.12-0.15$: (I) $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8}$ (Fedorov \& Pakhomov, 1975), (II) the room-temperature phase of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ [Pakhomov \& Fedorov (1973); see also Zandbergen, Verschoor \& IJdo (1979) for isomorphous compoundsl, and (III) $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$ (Fedorov, Pakhomov \& Ivanova-Korfini, 1975). In this report we re-examine these structures using diffractometer data, arriving at considerably refined structural models. One of the compounds, (I), is shown to be a hydrate, $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$. This could easily have been overlooked in earlier studies because the water molecule represents only 0.9% of the formula weight. A preliminary report on the refinement of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ has been published elsewhere (Sjövall \& Svensson, 1986).

Experimental. The crystals used for X-ray data collection were grown at room temperature by slow evaporation from water solutions of CsI and HgI_{2}. The crystals were transparent with increasingly yellow tints for higher HgI_{2} content. They were washed in n-hexane [(I) and (II)] or toluene [(III)] and then dried in air. Crystals of $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ appeared both short prismatic along \mathbf{c} and as triangular plates. The crystals of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ were thick tabular (001). $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$ crystals were tabular (010) with hexagonal appearance or equant with several faces.

Unit-cell parameters were obtained from powder photographs taken with a Guinier-Hägg focusing camera and silicon as internal standard $\left[\lambda\left(\mathrm{Cu} K a_{1}\right)\right.$ $=1.540598 \AA, a(\mathrm{Si})=5.430975 \AA$ at 292 K J . Least squares refinements of the cell parameters were based on 27 (I), 37 (II) and 31 (III) single indexed lines.*

[^0]© 1988 International Union of Crystallography

Table 1. Experimental parameters

Compound	(I)	(II)	(III)
Formula	$\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Cs}_{3} \mathrm{HgI}_{4}$	$\mathrm{Cs}_{3} \mathrm{Hgl}_{5}$
Transmission	0.088-0.170	0.068-0.173	0.014-0.029
$n\left\|I>3 \sigma_{c}(l)\right\|$: unique	1956: 1157	2009: 1357	1988
h, k, l range	0-9. $+25 .+8$	0-9. $\pm 9 . \pm 13$	0-22.0-21.0-11
m	69	41	83
R	0.032	0.032	0.024
${ }^{1} R$	0.041	0.043	0.033
S	1.02	1.11	1.01
g	$2.0(1) \times 10^{3}$	1.33 (4) $\times 10^{4}$	$3.5(1) \times 10^{3}$
$\Delta / \sigma_{\text {ma }}$	0.02	0.03	0.02
$\Lambda \rho_{\text {max }}\left(\mathrm{e} \AA^{3}\right.$)	1.8	1.5	1.0
c_{1}	0.028	0.025	0.010
c_{2}	5.0	1.0	20.0
Crystal dimensions(mm	$0.08 \times 0.07 \times 0.10$	$0.16 \times 0.08 \times 0.13$	0.323 (sphere)

Table 2. Final fractional coordinates and equivalent isotropic temperature factors with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
(I) $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$				
$\mathrm{Hg}(1)$	-0.11368 (20)	$0 \cdot 19433$ (3)	-0.07508 (17)	0.0527 (3)
$\mathrm{Hg}(2)$	$0 \cdot 0$	$0 \cdot 0$	0.0	0.0559 (4)
I(1)	0.35352 (25)	$0 \cdot 0$	$0 \cdot 23006$ (27)	0.0469 (5)
I(2)	-0.12005 (30)	0.0	-0.36760 (26)	0.0504 (6)
I(3)	$0 \cdot 28682$ (22)	$0 \cdot 19263$ (4)	0.06708 (20)	0.0432 (4)
I(4)	-0.26275 (25)	$0 \cdot 19482$ (5)	-0.44084 (20)	0.0508 (4)
I(5)	-0.21132 (23)	0.09808 (4)	0.11746 (20)	0.0442 (4)
Cs	0.24381 (28)	$0 \cdot 12435$ (6)	0.55965 (25)	0.0698 (5)
0	0.4258 (35)	0.0	0.7571 (31)	0.096 (10)
(II) $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$				
Hg	0.09387 (6)	0.25	0.27397 (4)	0.0511 (2)
I(1)	$0 \cdot 18988$ (12)	0.25	$0 \cdot 54496$ (8)	0.0721 (4)
I(2)	0.26151 (8)	0.51474 (6)	0.21163 (5)	0.0558 (2)
I(3)	-0.27762 (12)	0.25	0.14263 (8)	0.0765 (4)
Cs(1)	$0 \cdot 66050$ (10)	0.25	0.46777 (7)	0.0565 (3)
$\mathrm{Cs}(2)$	$0 \cdot 21824$ (14)	0.25	0.90527 (7)	0.0719 (3)

(III) $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$				
Hg	$0.34347(3)$	$0.43378(3)$	$0.30835(6)$	$0.0410(2)$
$\mathrm{I}(1)$	$0.23091(5)$	$0.52777(6)$	$0.36354(11)$	$0.0521(3)$
$\mathrm{I}(2)$	$0.28833(6)$	$0.30722(6)$	$0.20088(11)$	$0.0548(4)$
$\mathrm{I}(3)$	$0.40279(5)$	$0.38500(5)$	$0.54694(9)$	$0.0454(3)$
$\mathrm{I}(4)$	$0.45168(5)$	$0.49677(6)$	$0.16961(11)$	$0.0545(4)$
$\mathrm{I}(5)$	$0.07078(5)$	$0.25173(6)$	$0.32969(9)$	$0.0453(3)$
$\mathrm{Cs}(1)$	$0.42805(5)$	$0.17955(5)$	$0.41582(10)$	$0.0493(3)$
$\mathrm{Cs}(2)$	$0.10168(6)$	$0.40534(5)$	$0.08608(11)$	$0.0527(3)$
$\mathrm{Cs}(3)$	$0.18916(5)$	$0.14445(5)$	$0.07212(10)$	$0.0449(3)$

Three-dimensional intensity data were collected with the $\omega-2 \theta$ scan technique on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo $K \alpha$ radiation to a maximum $\theta=25^{\circ}$. Crystals of (I) and (II) were used as grown while (III) could be ground to a sphere. Scan ranges were $\Delta \omega=0.8^{\circ}+0.5^{\circ} \tan \theta$ with maximum counting times of 180 (I), 240 (II) and 240 (III) s. Three standard reflections were checked every two hours. No significant intensity changes were detected during the total exposure times of 80 (I), 104 (II) and 136 (III) h. Intensities were corrected for Lorentz, polarization and absorption (numerical integration) effects. No averaging of equivalent reflections. Structure solution by MULTAN80 for (I). Refinements (on F) of (II) and (III) were started from the models by Pakhomov \& Fedorov (1973) and

Fedorov et al. (1975). Scattering factors and anomalous-dispersion corrections for Cs^{+}and neutral Hg, I and O atoms were taken from International Tables for X-ray Crystallography (1974). All atoms were assumed to vibrate anisotropically. Weights were calculated from $w^{-1}=\sigma_{c}^{2}\left(F_{0}\right)+\left(c_{1}\left|F_{0}\right|\right)^{2}+c_{2} ; c_{1}, c_{2}$ given in Table 1. Corrections for isotropic secondary extinction according to Becker \& Coppens (1975) were included. Space groups were determined from systematic extinctions and by the results of refinements. The model of (I) in Cm is incompatible with C 2 or $C 2 / m$. Refinement of (II) in the non-centrosymmetric $P 2_{1}$ as proposed by Pakhomov \& Fedorov (1973) did not significantly improve the fit with either polar axis sense. Space group Pbca for (III) is unique. The refinements are summarized in Table 1. Final atomic coordinates and temperature factor coefficients are given in Table 2.* All calculations were performed with programs described by Lundgren (1982).

During the refinement of the structure of (I) a peak was found in a difference electron density map that could be identified as a water O atom. Samples of all three compounds, about 2 mg each, were then investigated by differential scanning calorimetry in a PerkinElmer DSC-2C with a flowing-nitrogen atmosphere and a heating rate of $5 \mathrm{~K} \mathrm{~min}{ }^{-1}$. The only effects observed between room temperature and the melting points were (a) an endothermic peak for (I) starting at 387 K and (b) an endothermic peak for (II) starting at 523 K . The latter corresponds to the solid phase transition of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ (Pakhomov et al., 1977). The first peak was assigned to the release of water of crystallization from

[^1]

Fig. 1. Stereoview of the $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (I) structure projected on (001). The atoms coordinated to Cs^{+}are shown by thinner lines.
(I). After reaction these crystals retained their habit but they were no longer transparent and had acquired an orange tint. The H atoms were not located.

Table 3. Selected interatomic distances (\AA) and angles
$\left(^{\circ}\right)$ with e.s.d.'s in parentheses

(I) $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$			
$\mathrm{Hg}(1)-\mathrm{l}(4)$	$2 \cdot 684$ (1)	$\mathrm{I}(4)-\mathrm{Hg}(1)-\mathrm{I}(5)$	117.90 (5)
$\mathrm{Hg}(1)-\mathrm{I}(5)$	2.785 (1)	$\mathrm{I}(4)-\mathrm{Hg}(1)-\mathrm{I}(3)$	116.58 (5)
$\mathrm{Hg}(1)-\mathrm{I}(3)$	2.843 (1)	$\mathrm{I}(4)-\mathrm{Hg}(1)-\mathrm{I}(3)$	108.82 (4)
$\mathrm{Hg}(1)-\mathrm{I}(3)$	2.876 (1)	$\mathrm{I}(5)-\mathrm{Hg}(1)-\mathrm{I}(3)$	101.65 (4)
		$\mathrm{I}(5)-\mathrm{Hg}(1)-\mathrm{I}(3)$	107.37 (4)
		$\mathrm{I}(3)-\mathrm{Hg}(1)-\mathrm{I}(3)$	$103 \cdot 20$ (4)
$\mathrm{Hg}(2)-\mathrm{I}(1)$	2.680 (2)	$\mathrm{I}(1)-\mathrm{Hg}(2)-\mathrm{I}(2)$	129.28 (7)
$\mathrm{Hg}(2)-\mathrm{I}(2)$	$2 \cdot 686$ (2)	$\mathrm{I}(1)-\mathrm{Hg}(2)-\mathrm{I}(5)$	2×107.86 (4)
$\mathrm{Hg}(2)-\mathrm{I}(5)$	2×2.952 (1)	$\mathrm{I}(2)-\mathrm{Hg}(2)-\mathrm{I}(5)$	2×106.62 (4)
		$\mathrm{I}(5)-\mathrm{Hg}(2)-\mathrm{I}(5)$	92.40 (5)
$\mathrm{Cs}-\mathrm{O}$	$3 \cdot 19$ (1)	Capping atoms	
Cs--I(4)	3.928 (2)	$\mathrm{O}-\mathrm{Cs}-\mathrm{I}(4)$	148.3 (3)
Cs-1(1)	3.957 (2)	$\mathrm{O}-\mathrm{Cs}-\mathrm{l}(5)$	113.9 (3)
Cs-l(4)	3.984 (2)	$\mathrm{I}(4)-\mathrm{Cs}-\mathrm{l}(5)$	97.69 (4)
Cs-I(2)	3.987 (2)		
Cs-I(5)	4.030 (2)		
Cs-I(4)	4.072 (2)		
Cs-I(3)	4.091 (2)		
Cs-I(3)	$4 \cdot 169$ (2)		
(II) $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$			
$\mathrm{Hg}-\mathrm{I}(3)$	2.738 (1)	I(3) $-\mathrm{Hg}-\mathrm{l}(2)$	2×111.35 (2)
Hg-I(2)	2×2.774 (1)	I(3) $-\mathrm{Hg}-1(1)$	114.03 (3)
$\mathrm{Hg}-\mathrm{I}(1)$	$2 \cdot 819$ (1)	$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{I}(2)$	106.35 (3)
		$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{I}(1)$	2×106.66 (2)
$\mathrm{Cs}(1)-\mathrm{I}(3)$	3.774 (1)	Capping atoms	
$\mathrm{Cs}(1)-\mathrm{I}(1)$	3.886 (1)	$\mathrm{I}(1)-\mathrm{Cs}(1)-\mathrm{I}(1)$	2×106.06 (2)
$\mathrm{Cs}(1)-\mathrm{I}(2)$	$2 \times 3.908(1)$	$\mathrm{I}(1)-\mathrm{Cs}(1)-\mathrm{I}(1)$	147.75 (3)
$\mathrm{Cs}(1)-\mathrm{l}(1)$	4.012 (1)		
$\mathrm{Cs}(1)-\mathrm{I}(2)$	2×4.055 (1)		
$\mathrm{Cs}(1)-1(1)$	2×4.365 (1)		
$\mathrm{Cs}(2)-\mathrm{I}(3)$	3.879 (1)	Capping atoms	
$\mathrm{Cs}(2)-\mathrm{I}(1)$	3.900 (1)	$\mathrm{I}(3)-\mathrm{Cs}(2)-\mathrm{I}(3)$	158.14 (4)
$\mathrm{Cs}(2)-\mathrm{I}(2)$	2×3.958 (1)		
$\mathrm{Cs}(2)-\mathrm{I}(2)$	2×4.005 (1)		
$\mathrm{Cs}(2)-\mathrm{I}(3)$	2×4.271 (1)		
(III) $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$			
Hg -I(4)	2.729 (1)	$\mathrm{I}(4)-\mathrm{Hg}-\mathrm{I}(2)$	115.78 (4)
Hg-I(2)	2.774 (1)	$\mathrm{I}(4)-\mathrm{Hg}-\mathrm{I}(1)$	113.78 (4)
$\mathrm{Hg}-\mathrm{I}(1)$	2.790 (1)	$\mathrm{I}(4)-\mathrm{Hg}-\mathrm{I}(3)$	106.38 (4)
$\mathrm{Hg}-\mathrm{I}(3)$	$2 \cdot 804$ (1)	$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{l}(1)$	108.50 (4)
		$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{I}(3)$	102.44 (4)
		$\mathrm{I}(1)-\mathrm{Hg}-\mathrm{I}(3)$	109.18 (4)
$\mathrm{Cs}(1)-1(5)$	$3 \cdot 888$ (2)	Capping atoms	
$\mathrm{Cs}(1)-\mathrm{I}(2)$	3.905 (2)	I(3)-Cs(1)-I(3)	125.38 (3)
$\mathrm{Cs}(1)-\mathrm{I}(5)$	3.926 (2)	I(3)-Cs(1)-I(4)	111.08 (3)
$\mathrm{Cs}(1)-1(3)$	3.942 (2)	$\mathrm{I}(3)-\mathrm{Cs}(1)-\mathrm{I}(4)$	122.83 (3)
$\mathrm{Cs}(\mathrm{I})-\mathrm{I}(3)$	4.040 (2)		
$\mathrm{Cs}(1)-1(1)$	$4 \cdot 126$ (2)		
$\mathrm{Cs}(1)-1(2)$	4.141 (2)		
$\mathrm{Cs}(1)-\mathrm{I}(4)$	$4 \cdot 148$ (2)		
$\mathrm{Cs}(1)-\mathrm{I}(4)$	$4 \cdot 164$ (2)		
$\mathrm{Cs}(2)-\mathrm{l}(5)$	3.797 (2)	Capping atoms	
$\mathrm{Cs}(2)-\mathrm{I}(3)$	$3 \cdot 886$ (2)	$\mathrm{I}(4)-\mathrm{Cs}(2)-\mathrm{I}(2)$	126.57 (4)
$\mathrm{Cs}(2)-1(5)$	3.929 (2)	$\mathrm{I}(4)-\mathrm{Cs}(2)-\mathrm{I}(4)$	103.59 (3)
$\mathrm{Cs}(2)-\mathrm{I}(3)$	3.989 (2)	$\mathrm{I}(2)-\mathrm{Cs}(2)-\mathrm{I}(4)$	127.22 (3)

Table 3 (cont.)

Fig. 2. Stereoview of the $\mathrm{Cs}_{2} \mathrm{Hgl}_{4}$ (II) structure. The direction of projection is 15° off $[010]$. I atoms of HgI_{4} groups from neighbouring unit cells have been added to show the coordination around the Cs^{+}ions.

Discussion. The structure of $\mathrm{Cs}_{2} \mathrm{Hg}_{3} \mathrm{I}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ consists of layers parallel to (001) of vertex-sharing HgI_{4} tetrahedra with overall composition $\mathrm{Hg}_{3} \mathrm{I}_{8}^{2-}$ (Fig. 1). All tetrahedra are oriented approximately the same, with the mirror plane perpendicular to the layers. The stacking vector is the \mathbf{c} lattice translation. Cs^{+}and $\mathrm{H}_{2} \mathrm{O}$ are located between the layers. The two independent HgI_{4} groups have slightly different geometry, both with considerably longer $\mathrm{Hg}-\mathrm{I}$ distances to the vertexshared I atoms, cf. Table 3. The caesium coordination polyhedron of (I) is a tricapped trigonal prism with a water O atom, at $3 \cdot 19(1) \AA$, as one of the capping atoms. The $\mathrm{Cs}-\mathrm{I}$ distances range from 3.928 (2) to 4.169 (2) \AA. The thermal vibration component of the O atom perpendicular to the mirror plane is fairly high, which might indicate a disordering of the water molecule.

Application of the transformation matrix ($\overline{1} 00 /$ $0 \overline{\mathrm{I}} 0 / 101$) to the unit cell of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ gives an almost identical cell with $a^{\prime}=a, b^{\prime}=b, c^{\prime}=11.080$ (1) \AA and $\beta^{\prime}=110.91(1)^{\circ}$. This cell corresponds to the atomic coordinates used by Zandbergen et al. (1979) for isomorphous $\mathrm{Rb}_{2} \mathrm{FeI}_{4}$ and by Philippot, Ribes \& Maurin (1971), with the axes in reverse order, for isomorphous $\mathrm{Sr}_{2} \mathrm{GeS}_{4}$. However, we have preferred the reduced cell and the coordinates originally used by Pakhomov \& Fedorov (1973) for (II). There has been some uncertainty whether this structure belongs to space group $P 2_{1}$ or $P 2_{1} / m$. Both Zandbergen et al. (1979) and Pakhomov \& Fedorov (1973) assumed $P 2$, to be correct. We have, however, found no evidence in this study for the absence of the mirror plane in the structure of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$.

The structure of $\mathrm{Cs}_{2} \mathrm{HgI}_{4}$ has isolated tetrahedral HgI_{4}^{2-} ions with m symmetry (Fig. 2). The $\mathrm{Hg}-\mathrm{I}$ distances are between 2.738 (1) and 2.819 (1) \AA, cf.

Fig. 3. Stereoview of the $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$ (III) structure down [001]. In the upper half a column of distorted face-sharing Cs^{+}octahedra centred by $\mathrm{I}(5)$ is shown. The coordination around three independent Cs^{+}ions is shown in the lower half.

Table 3. The directions and amplitudes of thermal vibration of the I atoms indicate considerable librations of the entire HgI_{4}^{2-} ion. The two independent Cs^{+}ions have $6+2$ and $7+2$ coordination, respectively, in capped trigonal prisms. The prism axes coincide with the mirror planes of the structure. In both cases there is a jump in the $\mathrm{Cs}-\mathrm{I}$ distances of about $0.3 \AA$ between the nearest neighbours and the two capping atoms further away. In isomorphous $\mathrm{Sr}_{2} \mathrm{GeS}_{4}$ both Sr^{+}ions have $6+2$ coordination in bicapped trigonal prisms.

Compound (III), $\mathrm{Cs}_{3} \mathrm{HgI}_{5}$, is built from $\mathrm{Cs}^{+}, \mathrm{HgI}_{4}^{2-}$ and I^{-}ions (Fig. 3). The $\mathrm{Hg}-\mathrm{I}$ bond distances, 2.729 (1) to 2.804 (1) \AA, are comparable with those of (II). The Cs^{+}ions are arranged so that an octahedron is formed around the I^{-}ion; the six $\mathrm{Cs}-\mathrm{I}(5)$ distances are 3.797 (2) to 3.954 (2) \AA. These octahedra share faces and form columns along c. The three Cs^{+}ions have 9 ,
$7+2$ and $7+1$ coordination. The three coordination polyhedra, which can be described as capped trigonal prisms, share a common edge $\mathrm{I}(5)-\mathrm{I}(5)$. The $\mathrm{Cs}-\mathrm{I}$ distances are 3.888 (2)-4. 164 (2), 3.797 (2)-4.688 (2) and 3.764 (2)-4.283 (2) \AA, respectively.

References

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417.
Fedorov, P. M. \& Pakhomov, V. I. (1975). Sov. J. Coord. Chem. 1, 556-560.
Fedorov, P. M., Ракhomov, v. I. \& Ivanova-Korfini, I. N. (1975). Sov. J. Coord. Chem. 1, 1295-1297.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Lundgren, J.-O. (1982). Rep. No. UUIC-B13-4-05. Univ. of Uppsala, Sweden.
Ракномov, V. I. \& Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833-836.
Pakhomov, V. I., Fedorov, P. M., Polyakov, Yu. A. \& Kirilenko, V. V. (1977). Russ. J. Inorg. Chem. 22, 103-105.
Pernot, M. (1936). C. R. Acad. Sci. 202, 576-578.
Pernot, M. (1938). C. R. Acad. Sci. 206, 909-911.
Philippot, E., Ribes, M. \& Maurin, M. (1971). Rev. Chim. Minér. 8, 99-109.
Podorozhnyi, A. M., Safonov, V. V. \& Korshunov, B. G. (1982). Russ. J. Inorg. Chem. 27, 1040-1043.

Podorozhnyi, A. M., Safonov, V. V. \& Sharipov, Kh. T. (1984). Russ. J. Inorg. Chem. 29, 618-620.

Suövall, R. \& Svensson, C. (1986). Collected Abstracts, Tenth European Crystallographic Meeting, Wroclaw, Poland, 5-9 August 1986, p. 257.
Wells, H. L. (1892). Am. J. Sci. 3, 221.
Zandbergen, H. W., Verschoor, G. C. \& IJdo, D. J. W. (1979). Acta Cryst. B35, 1425-1427.

Trichlorosulfonium(IV) Tetrachloroaurate(III)

By Peter G. Jones, Dieter Jentsch and Einhard Schwarzmann
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

(Received 19 August 1987; accepted 28 September 1987)

Abstract

SCl}_{3}\right]\left[\mathrm{AuCl}_{4}\right], \quad M_{r}=477 \cdot 2\), monoclinic, $P 2_{1} / c, a=8.637$ (3),$b=10.240$ (4), $c=11.618$ (4) \AA, $\beta=107.88(3)^{\circ}, \quad V=977.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $3.24 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мo $K \alpha)=0.71069 \AA, \quad \mu=169 \mathrm{~cm}^{-1}$, $F(000)=856, T=293 \mathrm{~K}, R=0.043$ for 1303 unique observed reflections. The structure consists of pyramidal SCl_{3}^{+}cations and square-planar AuCl_{4}^{-}anions that are linked by secondary $\mathrm{S} \cdots \mathrm{Cl}$ interactions of average length $3.08 \AA$ to form centrosymmetric dimers; the coordination geometry at sulfur is distorted octahedral.

0108-2701/88/020210-03\$03.00

The compound is isostructural with its selenium analogue.

Introduction. We have investigated secondary $M \cdots X$ interactions in several $M X_{3}^{+}$.Au X_{4}^{-}species ($M=\mathrm{Te}$, $X=\mathrm{Cl}$: Jones, Jentsch \& Schwarzmann, 1986; M $=\mathrm{Se}, X=\mathrm{Cl}$; Jones, Schelbach \& Schwarzmann, 1987; $M=\mathrm{Te}, X=\mathrm{Br}$; Freire Erdbrügger, Jentsch, Jones \& Schwarzmann, 1987). These compounds, and also those of other halo-anions (Christian, Collins, Gillespie © 1988 International Union of Crystallography

[^0]: * See deposition footnote. The JCPDS Diffraction File Nos. are 38-1387, 38-1386 and 38-1385 for (I), (II) and (III), respectively.

[^1]: * Lists of structure factors, anisotropic thermal parameters and powder data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44415 (64 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

